Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(17): e202401066, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38450828

RESUMEN

In the field of organic photovoltaics (OPVs), significant progress has been made in tailoring molecular structures to enhance the open-circuit voltage and the short-circuit current density. However, there remains a crucial gap in the development of coordinated material design strategies focused on improving the fill factor (FF). Here, we introduce a molecular design strategy that incorporates electrostatic potential fluctuation to design organic photovoltaic materials. By reducing the fluctuation amplitude of IT-4F, we synthesized a new acceptor named ITOC6-4F. When using PBQx-TF as a donor, the ITOC6-4F-based cell shows a markedly low recombination rate constant of 0.66×10-14 cm3 s-1 and demonstrates an outstanding FF of 0.816, both of which are new records for binary OPV cells. Also, we find that a small fluctuation amplitude could decrease the energetic disorder of OPV cells, reducing energy loss. Finally, the ITOC6-4F-based cell creates the highest efficiency of 16.0 % among medium-gap OPV cells. Our work holds a vital implication for guiding the design of high-performance OPV materials.

2.
J Am Chem Soc ; 146(13): 9205-9215, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38523309

RESUMEN

The nonfused thiophene-benzene-thiophene (TBT) unit offers advantages in obtaining low-cost organic photovoltaic (OPV) materials due to its simple structure. However, OPV cells, including TBT-based acceptors, exhibit significantly lower energy conversion efficiencies. Here, we introduce a novel approach involving the design and synthesis of three TBT-based acceptors by substituting different position-branched side chains on the TBT unit. In comparison to TBT-10 and TBT-11, TBT-13, which exclusively incorporates α-position branched side chains with a large steric hindrance, demonstrates a more planar and stable conformation. When blended with the donor PBQx-TF, TBT-13-based blend film achieves favorable π-π stacking and aggregation characteristics, resulting in excellent charge transfer performance in the corresponding device. Due to the simultaneous enhancements in short-circuit current density and fill factor, the TBT-13-based OPV cell obtains an outstanding efficiency of 16.1%, marking the highest value for the cells based on fully nonfused acceptors. Our work provides a practical molecular design strategy for high-performance and low-cost OPV materials.

3.
J Am Chem Soc ; 146(12): 8697-8705, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38478698

RESUMEN

Organic photovoltaic (OPV) cells have demonstrated remarkable success on the laboratory scale. However, the lack of cathode interlayer materials for large-scale production still limits their practical application. Here, we rationally designed and synthesized a cathode interlayer, named NDI-Ph. Benefiting from their well-modulated work function and self-doping effect, NDI-Ph-based binary OPV cells achieve an excellent power conversion efficiency (PCE) of 19.1%. NDI-Ph can be easily synthesized on a 100 g scale with a low cost of 1.96 $ g-1 using low-cost raw materials and a simple postprocessing method. In addition, the insensitivity to the film thickness of NDI-Ph enables it to maintain a high PCE at various coating speeds and solution concentrations, demonstrating excellent adaptability for high-throughput OPV cell manufacturing. As a result, a module with 21.9 cm2 active area achieves a remarkable PCEactive of 15.8%, underscoring the prospects of NDI-Ph in the large-scale production of OPV cells.

4.
Adv Mater ; : e2313532, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386402

RESUMEN

Developing efficient organic solar cells (OSCs) with thick active layers is crucial for roll-to-roll printing. However, thicker layers often result in lower efficiency. This study tackles this challenge using a polymer adsorption strategy combined with a layer-by-layer approach. Incorporating insulator polystyrene (PS) into the PM6:L8-BO system creates PM6+PS:L8-BO blends, effectively suppressing trap states and extending exciton diffusion length in the mixed donor domain. Adding insulating polymers with benzene rings to the donor enhances π-π stacking of donors, boosting intermolecular interactions and electron wave function overlap. This results in more orderly molecular stacking, longer exciton lifetimes, and higher diffusion lengths. The promoted long-range exciton diffusion leads to high power conversion efficiencies of 19.05% and 18.15% for PM6+PS:L8-BO blend films with 100 and 300 nm thickness, respectively, as well as a respectable 16.00% for 500 nm. These insights guide material selection for better exciton diffusion, and offer a method for thick-film OSC fabrication, promoting a prosperous future for practical OSC mass production.

5.
Small Methods ; 8(2): e2300397, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37204077

RESUMEN

Benefiting from the synergistic development of material design, device engineering, and the mechanistic understanding of device physics, the certified power conversion efficiencies (PCEs) of single-junction non-fullerene organic solar cells (OSCs) have already reached a very high value of exceeding 19%. However, in addition to PCEs, the poor stability is now a challenging obstacle for commercial applications of organic photovoltaics (OPVs). Herein, recent progress made in exploring operational mechanisms, anomalous photoelectric behaviors, and improving long-term stability in non-fullerene OSCs are highlighted from a novel and previously largely undiscussed perspective of engineering exciton and charge carrier pathways. Considering the intrinsic connection among multiple temporal-scale photocarrier dynamics, multi-length scale morphologies, and photovoltaic performance in OPVs, this review delineates and establishes a comprehensive and in-depth property-function relationship for evaluating the actual device stability. Moreover, this review has also provided some valuable photophysical insights into employing the advanced characterization techniques such as transient absorption spectroscopy and time-resolved fluorescence imagings. Finally, some of the remaining major challenges related to this topic are proposed toward the further advances of enhancing long-term operational stability in non-fullerene OSCs.

6.
J Phys Chem Lett ; 14(26): 6051-6060, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37358341

RESUMEN

Organic photovoltaics (OPVs) are regarded as one of the most promising candidates for various outdoor and indoor application scenarios. The development and application of nonfullerene acceptors have pushed power conversion efficiencies (PCEs) of single-junction cells to exceed 19%, and values approaching 20% are within sight. This progress has resulted in some unexpected photophysical observations deserving more in-depth spectroscopic research. In this Perspective, we have summarized recent photophysical advances in accordance with results of ultrafast spectroscopy in our and other groups and provide our point of view on multiple-time scale exciton dynamics involving the following aspects: long-range exciton diffusion driven by dual Förster resonance energy transfer, origins of driving force for hole transfer under small energy offsets, trap-induced charge recombination in outdoor and indoor OPVs, and a picture of real-time evolution of excitons and charge carriers regarding stability. Moreover, our understanding of the photophysical property-function relationship is proposed in state-of-the-art OPVs. Finally, we point out the remaining challenges devoted to the further development of versatile OPVs.

7.
J Am Chem Soc ; 145(25): 13686-13695, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37311087

RESUMEN

Low-bandgap materials have achieved rapid development and promoted the enhancement of power conversion efficiencies (PCEs) of organic photovoltaic (OPV) cells. However, the design of wide-bandgap non-fullerene acceptors (WBG-NFAs), required by indoor applications and tandem cells, has been lagging far behind the development of OPV technologies. Here, we designed and synthesized two NFAs named ITCC-Cl and TIDC-Cl by finely optimizing ITCC. In contrast with ITCC and ITCC-Cl, TIDC-Cl can maintain a wider bandgap and a higher electrostatic potential simultaneously. When blending with the donor PB2, the highest dielectric constant is also obtained in TIDC-Cl-based films, enabling efficient charge generation. Therefore, the PB2:TIDC-Cl-based cell possessed a high PCE of 13.8% with an excellent fill factor (FF) of 78.2% under the air mass 1.5G (AM 1.5G) condition. Furthermore, an exciting PCE of 27.1% can be accomplished in the PB2:TIDC-Cl system under the illumination of 500 lux (2700 K light-emitting diode). Combined with the theoretical simulation, the tandem OPV cell based on TIDC-Cl was fabricated and exhibited an excellent PCE of 20.0%.

8.
ACS Appl Mater Interfaces ; 15(9): 12109-12118, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36813758

RESUMEN

The charge transfer between the donor and acceptor determines the photogenerated carrier density in organic solar cells. However, a fundamental understanding regarding the charge transfer at donor/acceptor interfaces with high-density traps has not been fully addressed. Herein, a general correlation between trap densities and charge transfer dynamics is established by adopting a series of high-efficiency organic photovoltaic blends. It is found that the electron transfer rates are reduced with increased trap densities, while the hole transfer rates are independent of trap states. The local charges captured by traps can induce potential barrier formation around recombination centers, leading to the suppression of electron transfer. For the hole transfer process, the thermal energy provides a sufficient driving force, which ensures an efficient transfer rate. As a result, a 17.18% efficiency is obtained for PM6:BTP-eC9-based devices with the lowest interfacial trap densities. This work highlights the importance of interfacial traps in charge transfer processes and proposes an underlying insight into the charge transfer mechanism at nonideal interfaces in organic heterostructures.

9.
J Phys Chem Lett ; 13(51): 11974-11981, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36535016

RESUMEN

Voltage losses are one of the main obstacles for further improvement in the power conversion efficiency of organic solar cells. In this work, we investigate the effect of thermal stress on voltage losses in various material systems by multiple spectroscopic measurements on both devices and thin films. The energetics of nonfullerene small molecules are more readily altered under thermal stress compared to all-polymer and fullerene-based systems, thereby strongly affecting open-circuit voltage. These energetics variations correlate with the glass transition of respective materials. While nonfullerene small molecular acceptor systems exhibit both dynamic and static disorders which can be restrained in annealed films, all-polymeric systems exhibit dominated static disorders, which are also stable against thermal stress. The much higher voltage losses in fullerene-based systems compared to the other two counterparts are mainly due to the losses from device band gap to charge transfer states and the high nonradiative recombination.

10.
ACS Appl Mater Interfaces ; 14(46): 52244-52252, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36346919

RESUMEN

Dithieno[2,3-d;2',3'-d']benzo[1,2-b;4,5-b']dithiophene (DTBDT) is a kind of pentacyclic aromatic electron-donating unit with unique optoelectronic properties, but it has received less attention in the design of photovoltaic polymers. In this work, we copolymerized DTBDT with the electron-deficient unit of dithieno[3',2':3,4;2″,3″:5,6]benzo[1,2-c][1,2,5]thiadiazole (DTBT) and obtained two polymers, PE55 and PE56, with a synergistic heteroatom substitution strategy. When blended with the classic nonfullerene acceptor Y6, PE55 and PE56 achieve power conversion efficiencies (PCEs) of 13.78% and 14.49%, respectively, which indicates that the introduction of sulfur atoms on the conjugated side chain of the D unit is a promising method to enhance the performance of DTBDT-based polymers. Besides, we utilize dichloromethane and chloroform to separate the low molecular weight (Mw) fractions in the solvent extraction process to obtain PE55-CF and PE56-CB, and the PCEs are further improved to 15.00% and 16.11%, respectively. The stronger π-π stacking, optimized blend film morphology, and higher charge mobilities contribute to the enhanced PCEs for polymers with higher Mw obtained via the multistep solvent extraction strategy. Our results not only provide a simple and effective way to improve the photovoltaic performance of conjugated polymers but also imply that some reported polymers purified from the traditional one-step solvent extraction method might be seriously underestimated.

11.
ACS Nano ; 16(8): 13049-13056, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35943139

RESUMEN

Achiral organic materials show nearly negligible orbit angular momentum, whereas organic ferrimagnets with chirality and reduced electron-lattice scattering could fundamentally bridge the gap between ferromagnetism and antiferromagnetism in the rapidly emerging field of ferrimagnetic spintronics. In this work, we report enantiomeric organic chiral ferrimagnets, where the chirality results from the molecular torsion by propeller-like arrangement of the donor and acceptor molecules. The ferrimagnetism results from the difference in electron-phonon coupling of the donor and acceptor inside the chiral crystals. Because the spin polarization is significantly dependent on the chirality, the magnetization of right-handed organic chiral ferrimagnetic crystals is larger than that of left-handed ones by 300% at 10 K. In addition, the processes of both excitation and recombination are strongly related to spin, phonon, and chiral orbit in these chiral ferrimagnets. Overall, both the organic chiral ferrimagnetism and spin chiroptical activities may substantially enrich the field of organic spintronics.

12.
ACS Nano ; 16(3): 4843-4850, 2022 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-35171574

RESUMEN

Manipulating magnetic bits by photon in spintronics, opto-magnetic coupling, is lagging far behind what we could expect. To investigate the issue, one should face the problem to find photon dependence of spin dynamics and spin manipulation. In this work, through introducing chiral orbit in organic crystals, circularly polarized photon can manipulate spin via the channel of photon-orbit-spin interactions. Under the stimulus of the magnetic field, strong spin polarization will feed back to the change in polarized state of light. Moreover, twisting several chiral nanofibers into a thick one, a more pronounced opto-magnetic coupling is clearly observed due to the chirality generated larger chiral orbit. Meanwhile, spin dynamics (or spin response times) inside the aggregated thick chiral fiber can be further tuned by circularly polarized light. Hopefully, this study can deepen the understanding of organic chiral spin-photonics and enhance the application of organic functional crystals in the future.

13.
ACS Appl Mater Interfaces ; 13(9): 11134-11143, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33625840

RESUMEN

Achieving high-efficiency thick-film bulk heterojunction (BHJ) organic solar cells (OSCs) with thickness-independent power conversion efficiencies (PCEs) in a wide thickness range is still a challenge for the roll-to-roll printing techniques. The concept of diluting the transport sites within BHJ films with insulating polymers can effectively eliminate charge trapping states and optimize the charge transport. Herein, we first adopted the concept with insulating polypropylene (PP) in the efficient non-fullerene system (PM6:Y6) and demonstrated its potential to fabricate thick-film OSCs. The PP can form an insulating matrix prior to PM6 and Y6 within the BHJ film, resulting in an enhanced molecular interaction and isolated charge transport by expelling Y6 molecules. We thus observed reduced trap state density and improved charge transport properties in the PP-blended device. At around 300 nm, the PM6:Y6:PP device enjoys a high PCE of 15.5% and achieves over 100% of the efficiency of the optimal thin-film device, which is significantly improved compared to the binary PM6:Y6 counterpart. This research promotes an effective strategy with insulating polymers and provides knowledge of commercial production with response to the roll-to-roll technique demands.

15.
J Phys Chem Lett ; 10(22): 7100-7106, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31682127

RESUMEN

The underlying hole-transfer mechanism in high-efficiency OSC bulk heterojunctions based on acceptor-donor-acceptor (A-D-A) nonfullerene acceptors (NFAs) remains unclear. Herein, we study the hole-transfer process between copolymer donor J91 and five A-D-A NFAs with different highest occupied molecular orbital energy offsets (ΔEH) (0.05-0.42 eV) via ultrafast optical spectroscopies. Transient absorption spectra reveal a rapid hole-transfer rate with small ΔEH, suggesting that a large energy offset is not required to overcome the exciton binding energy. Capacitance-frequency spectra and time-resolved photoluminescence spectra confirm the delocalization of an A-D-A-structured acceptor exciton with weak binding energy. Relative to the hole-transfer rate, hole-transfer efficiency is the key factor affecting device performance. We propose that holes primarily stem from weakly bound acceptor exciton dissociation, revealing a new insight into the hole-transfer process in A-D-A NFA-based OSCs.

16.
ACS Nano ; 13(4): 4705-4711, 2019 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-30869866

RESUMEN

In this work, through designing organic helix donor-acceptor complexes, one type of room-temperature chiral magnet was reported. Within these chiral charge transfer magnets, circularly polarized light could induce a larger saturation magnetization compared to linearly polarized light illumination with identical intensity. Moreover, the transmission light polarization from chiral magnets could be tuned via applying the magnetic field. Overall, room-temperature organic chiral magnets with optomagnetic effects will enhance the function of organic magnetochiral materials.

17.
Appl Opt ; 58(4): 984-990, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30874146

RESUMEN

In this paper, we report on the ultrafast laser-induced birefringence, refractive index changes, and enhanced photoluminescence properties in the volume of neodymium (Nd), yttrium (Y) co-doped strontium fluoride (SrF2) and Nd, Y co-doped calcium fluoride (CaF2) crystals. The optical waveguides written with 500 kHz repetition rate provided lowest propagation loss of 1.63±0.21 dB cm-1 for transverse magnetic (TM) polarization at 632.8 nm in Nd,Y:SrF2 crystal. The measured retardance can be interpreted by stress-induced birefringence related to the permanent volume expansion, photo induced by a non-spherical irradiated zone. The absorption, steady-state, and time-resolved photoluminescence properties are also carried out in and out of the laser irradiated zone, enabling the local changes of the Nd and Y network in Nd,Y:SrF2, as well as well-preserved Nd fluorescence in the written optical waveguides.

18.
J Phys Chem Lett ; 9(21): 6238-6248, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30240225

RESUMEN

Novel functionalized graphene oxide π-π stacking with conjugated polymers (P-GO) is fabricated via a simple ethanol-mediated mixing method, leading to better dispersion in organic nonpolar solvents and bypassing the inherent restrictions of hydrophilicity and oleophobicity. We analyze the mechanism of the incorporation of P-GO into inverted organic solar cells (OSCs) based on a poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4- b]thiophenediyl]] (PTB7):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM) system to investigate the possibility of high-performance thick-film OSC fabrication. It is verified that the incorporation of P-GO into the PTB7:PC71BM blend films leads to a decreased π-π stacking distance, enlarged coherence length for polymer, and optimized phase separation, resulting in more effective charge dissociation, reduced bimolecular recombination, and more balanced charge transport. The OSCs with 1% P-GO incorporation demonstrate a thickness-insensitive fill factor (57.8%) and power conversion efficiency (PCE) (7.31%) even with 250 nm thick photoactive layers, leading to a dramatic PCE enhancement of 34% compared with the control devices with the same thickness.

19.
ACS Appl Mater Interfaces ; 8(35): 23212-21, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27525544

RESUMEN

A small-molecule material, 7,7-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']dithiophene-2,6-diyl)bis(6-fluoro-4-(5'-hexyl-[2,2'-bithiophen]-5-yl)benzo-[c] [1,2,5]thiadiazole) (p-DTS(FBTTH2)2), was used to modify the morphology and electron-transport properties of the polymer blend of poly(3-hexythiophene) (P3HT) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) bulk heterojunctions. As a result, a 24% increase in the power-conversion efficiency (PCE) of the p-DTS(FBTTH2)2:P3HT:PC71BM ternary organic solar cells (OSCs) is obtained. The improvement in the performance of OSCs is attributed to the constructive energy cascade path in the ternary system that benefits an efficient Förster resonance energy/charge transfer process between P3HT and p-DTS(FBTTH2)2, thereby improving photocurrent generation. It is shown that p-DTS(FBTTH2)2 molecules engage themselves at the P3HT/PC71BM interface. A combination of absorption enhancement, efficient energy transfer process, and ordered nanomorphology in the ternary system favors exciton dissociation and charge transportation in the polymer bulk heterojunction. The finding of this work reveals that distribution of the appropriate "guest" donor at the "host" donor/acceptor interface is an effective approach for attaining high-performance OSCs.

20.
J Phys Chem Lett ; 7(10): 1872-9, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27140304

RESUMEN

We report the effect of the processing solvent on the nanoscale morphology and photophysical dynamics of poly(3-butyl-thiophene) nanowires (P3BT-nw). P3BT-nw assembled in ortho-dichlorobenzene (ODCB) show higher crystallization and a longer conjugation length with increased exciton delocalization compared with those assembled in chlorobenzene (CB). It is proposed that this solvent effect is associated with the higher ordered structures formed from ODCB solution state. Charge-transfer dynamics and phase separation for P3BT-nw:PCBM blends were investigated by ultrafast fluorescence techniques. The more efficient fluorescence quenching observed in P3BT-nw:PCBM blend films processed from ODCB suggests that there is intimate contact between P3BT-nw and PCBM that facilitates charge transfer. The superior performance of organic photovoltaic devices based on P3BT-nw:PCBM bulk heterojunctions processed using ODCB is attributed to the higher crystallization of P3BT-nw, optimized phase separation, and more efficient charge transfer from P3BT-nw to PCBM.


Asunto(s)
Fulerenos/química , Nanotecnología , Tiofenos/química , Estructura Molecular , Nanocables , Procesos Fotoquímicos , Solventes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...